Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Med Virol ; 95(6): e28847, 2023 06.
Article in English | MEDLINE | ID: covidwho-20240737

ABSTRACT

Recently emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants are generally less pathogenic than previous strains. However, elucidating the molecular basis for pulmonary immune response alterations is challenging owing to the virus's heterogeneous distribution within complex tissue structure. Here, we revealed the spatial transcriptomic profiles of pulmonary microstructures at the SARS-CoV-2 infection site in the nine cynomolgus macaques upon inoculation with the Delta and Omicron variants. Delta- and Omicron-infected lungs had upregulation of genes involved in inflammation, cytokine response, complement, cell damage, proliferation, and differentiation pathways. Depending on the tissue microstructures (alveoli, bronchioles, and blood vessels), there were differences in the types of significantly upregulated genes in each pathway. Notably, a limited number of genes involved in cytokine and cell damage response were differentially expressed between bronchioles of the Delta- and Omicron-infection groups. These results indicated that despite a significant antigenic shift in SARS-CoV-2, the host immune response mechanisms induced by the variants were relatively consistent, with limited transcriptional alterations observed only in large airways. This study may aid in understanding the pathogenesis of SARS-CoV-2 and developing a clinical strategy for addressing immune dysregulation by identifying potential transcriptional biomarkers within pulmonary microstructures during infection with emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , SARS-CoV-2/genetics , Transcriptome , COVID-19/genetics , Pulmonary Alveoli , Cytokines/genetics , Macaca
2.
Immune Netw ; 22(6): e48, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2250836

ABSTRACT

With the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, which are randomly mutated, the dominant strains in regions are changing globally. The development of preclinical animal models is imperative to validate vaccines and therapeutics against SARS-CoV-2 variants. The objective of this study was to develop a non-human primate (NHP) model for SARS-CoV-2 Delta variant infection. Cynomolgus macaques infected with Delta variants showed infectious viruses and viral RNA in the upper (nasal and throat) and lower respiratory (lung) tracts during the acute phase of infection. After 3 days of infection, lesions consistent with diffuse alveolar damage were observed in the lungs. For cellular immune responses, all macaques displayed transient lymphopenia and neutrophilia in the early stages of infection. SARS-CoV-2 Delta variant spike protein-specific IgM, IgG, and IgA levels were significantly increased in the plasma of these animals 14 days after infection. This new NHP Delta variant infection model can be used for comparative analysis of the difference in severity between SARS-CoV-2 variants of concern and may be useful in the efficacy evaluation of vaccines and universal therapeutic drugs for mutations.

5.
Microbiol Spectr ; 10(1): e0161421, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1691406

ABSTRACT

The antigen-based rapid diagnostic test (Ag-RDT) using saliva specimens is fast, noninvasive, and suitable for SARS-CoV-2 self-testing, unlike nasopharyngeal swab (NPS) testing. We evaluated a novel Beanguard gargle (BG)-based virus collection method that can be applied to Ag-RDT as an alternative to the current RT-PCR with an NPS for early diagnosis of COVID-19. This clinical trial comprised 102 COVID-19-positive patients hospitalized after a governmental screening process and 100 healthy individuals. Paired NPS and BG-based saliva specimens from COVID-19 patients and healthy individuals were analyzed using NPS-RT-PCR, BG-RT-PCR, and BG-Ag-RDTs, whose diagnostic performance for detecting SARS-CoV-2 was compared. BG-Ag-RDTs showed high sensitivity (97.8%) and specificity (100%) in 45 patients within 6 days of illness and detected all cases of SARS-CoV-2 Alpha and Delta variants. In 11 asymptomatic active COVID-19 cases, both BG-Ag-RDTs and BG-RT-PCR showed sensitivities and specificities of 100%. Sensitivities of BG-Ag-RDT and BG-RT-PCR toward salivary viral detection were highly concordant, with no discrimination between symptomatic (97.0%), asymptomatic (100%), or SARS-CoV-2 variant (100%) cases. The intermolecular interactions between SARS-CoV-2 spike proteins and truncated canavalin, an active ingredient from the bean extract (BE), were observed in terms of physicochemical properties. The detachment of the SARS-CoV-2 receptor-binding domain from hACE2 increased as the BE concentration increased, allowing the release of the virus from hACE2 for early diagnosis. Using BG-based saliva specimens remarkably enhances the Ag-RDT diagnostic performance as an alternative to NPS and enables noninvasive, rapid, and accurate COVID-19 self-testing and mass screening, supporting efficient COVID-19 management. IMPORTANCE An Ag-RDT is less likely to be accepted as an initial test method for early diagnosis owing to its low sensitivity. However, our self-collection method, Ag-RDT using BG-based saliva specimens, showed significantly enhanced detection sensitivity and specificity toward SARS-CoV-2 including the Alpha and Delta variants in all patients tested within 6 days of illness. The method represents an attractive alternative to nasopharyngeal swabs for the early diagnosis of symptomatic and asymptomatic COVID-19 cases. The evidence suggests that the method could have a potential for mass screening and monitoring of COVID-19 cases.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Saliva/virology , Adult , Aged , Aged, 80 and over , COVID-19/virology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing/instrumentation , Female , Humans , Male , Middle Aged , Nasopharynx/virology , Republic of Korea , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sensitivity and Specificity , Young Adult
6.
J Infect Dis ; 224(11): 1861-1872, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1493829

ABSTRACT

Germinal centers (GCs) elicit protective humoral immunity through a combination of antibody-secreting cells and memory B cells, following pathogen invasion or vaccination. However, the possibility of a GC response inducing protective immunity against reinfection following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains unknown. We found GC activity was consistent with seroconversion observed in recovered macaques and humans. Rechallenge with a different clade of virus resulted in significant reduction in replicating virus titers in respiratory tracts in macaques with high GC activity. However, diffuse alveolar damage and increased fibrotic tissue were observed in lungs of reinfected macaques. Our study highlights the importance of GCs developed during natural SARS-CoV-2 infection in managing viral loads in subsequent infections. However, their ability to alleviate lung damage remains to be determined. These results may improve understanding of SARS-CoV-2-induced immune responses, resulting in better coronavirus disease 2019 (COVID-19) diagnosis, treatment, and vaccine development.


Subject(s)
COVID-19 , Germinal Center , Immunity, Humoral , Reinfection/immunology , Animals , Antibodies, Viral , COVID-19/immunology , Humans , Lung/pathology , Lung/virology , Macaca , Memory B Cells , Seroconversion
7.
Front Microbiol ; 12: 694897, 2021.
Article in English | MEDLINE | ID: covidwho-1325544

ABSTRACT

Recently, newly emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been continuously reported worldwide. However, the precise evaluation of SARS-CoV-2 microevolution in host is very limited because the exact genetic information of infected virus could not be acquired in human researches. In this report, we performed deep sequencing for seed virus and SARS-CoV-2 isolated in eight cynomolgus and rhesus macaques at 3 days postinoculation and evaluated single-nucleotide polymorphisms (SNPs) in SARS-CoV-2 by variant analysis. A total of 69 single-nucleotide variants (SNVs) were present in the 5'-untranslated region (UTR), 3'-UTR, ORF1ab, S, ORF3a, ORF8, and N genes of the seed virus passaged in VERO cells. Between those present on the seed virus and those on each SARS-CoV-2 isolated from the lungs of the macaques, a total of 29 variants was identified in 4 coding proteins (ORF1ab, S, ORF3a, and N) and non-coding regions (5'- and 3'-UTR). Variant number was significantly different according to individuals and ranged from 2 to 11. Moreover, the average major frequency variation was identified in six sites between the cynomolgus monkeys and rhesus macaques. As with diverse SNPs in SARS-CoV-2, the values of viral titers in lungs were significantly different according to individuals and species. Our study first revealed that the genomes of SARS-CoV-2 differ according to individuals and species despite infection of the identical virus in non-human primates (NHPs). These results are important for the interpretation of longitudinal studies evaluating the evolution of the SARS-CoV-2 in human beings and development of new diagnostics, vaccine, and therapeutics targeting SARS-CoV-2.

8.
Sci Adv ; 7(22)2021 05.
Article in English | MEDLINE | ID: covidwho-1247308

ABSTRACT

Since the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), various vaccines are being developed, with most vaccine candidates focusing on the viral spike protein. Here, we developed a previously unknown subunit vaccine comprising the receptor binding domain (RBD) of the spike protein fused with the tetanus toxoid epitope P2 (RBD-P2) and tested its efficacy in rodents and nonhuman primates (NHPs). We also investigated whether the SARS-CoV-2 nucleocapsid protein (N) could increase vaccine efficacy. Immunization with N and RBD-P2 (RBDP2/N) + alum increased T cell responses in mice and neutralizing antibody levels in rats compared with those obtained using RBD-P2 + alum. Furthermore, in NHPs, RBD-P2/N + alum induced slightly faster SARS-CoV-2 clearance than that induced by RBD-P2 + alum, albeit without statistical significance. Our study supports further development of RBD-P2 as a vaccine candidate against SARS-CoV-2. Also, it provides insights regarding the use of N in protein-based vaccines against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Coronavirus Nucleocapsid Proteins/immunology , Recombinant Fusion Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Tetanus Toxoid/immunology , Animals , COVID-19/genetics , COVID-19/immunology , COVID-19 Vaccines/genetics , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/genetics , Female , Macaca fascicularis , Mice , Mice, Inbred BALB C , Mice, Transgenic , Phosphoproteins/genetics , Phosphoproteins/immunology , Protein Domains , Rats , Recombinant Fusion Proteins/genetics , SARS-CoV-2/genetics , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spodoptera , Tetanus Toxoid/genetics , Vero Cells
9.
J Infect Dis ; 222(10): 1596-1600, 2020 10 13.
Article in English | MEDLINE | ID: covidwho-693639

ABSTRACT

Using a reliable primate model is critical for developing therapeutic advances to treat humans infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Here, we exposed macaques to high titers of SARS-CoV-2 via combined transmission routes. We observed acute interstitial pneumonia with endotheliitis in the lungs of all infected macaques. All macaques had a significant loss of total lymphocytes during infection, which were restored over time. These data show that SARS-CoV-2 causes a coronavirus disease 2019 (COVID-19)-like disease in macaques. This new model could investigate the interaction between SARS-CoV-2 and the immune system to test therapeutic strategies.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/complications , Disease Models, Animal , Lung Diseases, Interstitial/complications , Lymphopenia/complications , Monkey Diseases/virology , Pneumonia, Viral/complications , Animals , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Female , Lung Diseases, Interstitial/pathology , Lymphopenia/pathology , Macaca fascicularis , Macaca mulatta , Male , Monkey Diseases/pathology , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL